MABLE: A Framework for Learning from Natural
Instruction

Roger Mailler
University of Tulsa
Tulsa, Oklahoma 74104
mailler@utulsa.edu

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning

General Terms

Design, Experimentation

Keywords
Learning, MABLE, Architecture

ABSTRACT

The Modular Architecture for Bootstrapped Learning Experiments
(MABLE) is a system that is being developed to allow humans
to teach computers in the most natural manner possible: by us-
ing combinations of descriptions, demonstrations, and feedback.
MABLE is a highly modular, well-engineered, and extendable sys-
tem that provides generalized services, such as control, knowledge
representation, and execution management. MABLE works by ac-
cepting instruction from a teacher and forms concrete learning tasks
that are fed to state-of-the-art machine learning algorithms. To
make the learning tractable, specialized heuristics, in the form of
learning strategies, are used to derive bias from the instruction. The
output of the learning is then incorporated into the system’s back-
ground knowledge to be used in performing tasks or as the basis for
simplifying the process of learning difficult concepts.

Although still in development, MABLE has already demonstrated
the ability to learn four different types of knowledge (definitions,
rules, functions, and procedures) from three different modes of stu-
dent/teacher interaction on two separate, qualitatively different do-
mains. MABLE presents a unique opportunity for machine learn-
ing researchers to easily plug in and test algorithms in the context of
instructible computing. In the near future, MABLE will be freely
available as an open source project.

1. INTRODUCTION

The computer is probably the most flexible and powerful tool
ever devised by humans. Yet in spite of these properties, comput-
ers still retain one fundamental limitation: the cost, difficulty, and
time needed to develop new software. In stark contrast, humans are
able to learn complex tasks from, what most programmers would
consider to be, horrible instruction. Imagine for a moment a parent

Cite as: MABLE: A Framework for Learning from Natural Instruction,
Roger Mailler, Daniel Bryce, Jiaying Shen, Ciaran O’Reilly, Proc. of
8th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10-15,
2009, Budapest, Hungary, pp. 393—400

Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

393

Daniel Bryce
Utah State University
Logan, Utah 84322

daniel.bryce@usu.edu

Jiaying Shen,

Ciaran O’Reilly

SRI International
Menlo Park, California 94025
{shen,oreilly}@ai.sri.com

teaching their child to write the letter "p". Most would describe
it as "Draw a straight line and then put a loop at the top". Then
the parent would demonstrate the action of drawing the "p" while
explaining the actions and finally, would allow the child to demon-
strate mastery of the action while giving feedback on their perfor-
mance. Assuming the child can draw a reasonably good line and
loop, they will master this task quickly. We aim to design a digital
student that can learn from similar forms of natural instruction.

The Modular Architecture for Bootstrapped Learning Experi-
ments (MABLE), which is being constructed as part of DARPA’s
Bootstrapped Learning program, can be thought of as a step toward
human-instructible computing. The primary goal is to create a sys-
tem (a digital student) that learns from human instruction in all of
its various forms and in the face of incompleteness and impreci-
sion. This makes MABLE different from existing systems that are
designed to learn a single type of knowledge (e.g., a process) from
a single form of instruction (e.g., a demonstration). MABLE must
be able to create and modify hypotheses (bootstrap) that may have
been learned by a myriad of different learning techniques.

Achieving human-instructible computing entails a large number
of conceptual challenges, some of which will be addressed in this
paper. For example, how can we leverage all of the work that
has been done in machine learning over the past 50 years? How
can the system control the learning process? How can you form a
common representation that can represent everything MABLE has
learned and provide sufficient meta-information about the use of
that knowledge? How can we manage the interaction between the
teacher and the system to avoid the natural language understanding
problem? How can we resolve ambiguities that result from incom-
plete and inaccurate instruction or as a result of misunderstanding?

A secondary goal of the program is to provide the MABLE sys-
tem (and supporting architecture) to the Al community as a re-
search platform. We expect that researchers will benefit from hav-
ing a plug-in architecture with which they can test algorithms for
learning from natural instruction, and more-traditional algorithms
for machine learning. Therefore, every attempt as been made to
make MABLE as modular, extendable, and well-constructed as
possible. MABLE will be freely available as an open-source project
released under the terms of the BSD license [10].

In the following sections of this paper, we give an overview of the
bootstrapped learning program and the current version of MABLE.
We then describe the framework that is used to test and develop
MABLE and an example of instructible computing in Blocksworld.
Finally, we will discuss the open issues within our system, which
leads to our future directions.

2. BOOTSTRAPPED LEARNING

As mentioned in the introduction, MABLE is being developed as

AAMAS 2009 - 8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

part of DARPA’s Bootstrapped Learning (BL) Program. The goal
of this program is develop a system that can learn from a teacher
using natural instruction to revise, refine, or increase its capabilities
by bootstrapping on its existing knowledge. This knowledge takes
many forms including new rules, functions, and processes and can
be used to either perform tasks in a simulator or the real world.

To help facilitate the learning, the teacher is assumed to be able
to break down complex learning tasks into rungs that form laddered
curriculum. Each rung is used by the student to create, refine, or re-
place existing knowledge in its memory. You can imagine this pro-
cess as taking some set of knowledge K; and combining it with one
rung of instruction I to yield some new or, hopefully, improved
knowledge K41 or

Kt @] It = Kt+1

Although this formula is a vast simplification of bootstrapping,
one can immediately begin to form a set of issues that needs to be
answered in order for bootstrapping to work. The first issue that the
astute reader will recognize is that K needs to be in a standardized
form because it is recursively defined. Within the MABLE system,
knowledge is represented in a language called Interlingua (IL) [4],
discussed in Section 2.1.

The instruction I may come in a different language than K. For
example, a human may speak in English, although, their brain rep-
resents information as something very different (electrical signals,
chemicals, neural connections). Within the BL program, we use a
second language called the Interaction Language to represent com-
munication actions, including speech, gestures, and other percepts.
The interaction language will be discussed in section 2.2.

Interaction Language describes the basic syntax of communica-
tion between the teacher, student, and world, but it says nothing
about the semantics or protocol of the interaction. Section 2.3 de-
scribes the basic form of the curriculum and how each rung in the
ladder is taught to the student through the use of Natural Instruction
Method (NIM) contracts.

2.1 Interlingua

IL is a specialized language that was custom built to support the
BL program. It is a general, domain-independent language that is
robust enough to represent a tremendously diverse set of knowl-
edge, yet limited enough to be learnable. Interlingua is not a sim-
ple language though. In fact, it was designed to support additional
learnable extensions as the BL system evolves. Interlingua has a
fixed upper ontology that is extensible to include other embedded
languages.

Currently, Interlingua has three primary embedded languages.
The first of these is the syntax language. Being one of the most
powerful languages in IL, the syntax language permits the creation
of new legal syntax and is used in a recursive manner to define the
upper ontology and IL itself. The syntax language is composed of
the keywords is, arg, and a simplifying macro called defSyntax.

The is keyword is used to define new types within the IL lan-
guage. For example, one could say

is Dog Animal;

which defines a new type called Dog that is a sub-type of the An-
imal type. Unlike many languages, IL allows for multiple inheri-
tance, with the explicit order of super-types disambiguating prop-

erties inherited from parents in the type hierarchy.
The keyword arg, defines properties of types. For example, an
integer property of a Dog called age is specified by:

arg Dog age Integer;

394

Lesson 3
(Road) Block is an object in road traffic.

Lesson 1

Block is an object in blocksworld.
Strategy 1: Block(a,b,c), belief 0.8
Strategy 2: Block(a,b,c,d), belief 0.4

l Lesson 4

Block is an action in martial arts.
Lesson 2

Block is an object in blocksworld.
Improve on Block(a,b,c), belief 0.9

\

Current Lesson
Block the blow with a block.

Figure 1: Knowledge ambiguity example

The defSyntax macro is a short-hand method for creating new
types. Instead of writing the two statements above, we can specify
the Dog type as follows:

defSyntax Dog extends Animal (Integer age);

The second of the IL languages is the basic encoding language.
This is the language of the objects and properties of objects that
exist in real or simulated worlds. For example, the following is a
legal instance of an object in the basic encoding language of IL:

Dog (name=Rover, color=black, age=3);

The third core language of IL is the code body language. As
the name implies, this language specifies computable procedures
or functions. Currently, the code body language has support for
evaluating functions, running recursive procedures that are formed
with combinations of the control statements "if" and "while", and

for evaluating predicates defined in first-order predicate logic.
The classic "Hello World" application is given below as a sample

defSyntax HelloWorld extends Function;
defCode HelloWorld FunctionEngine
Functionbody (Return (returnValue="Hello World!"));

To support the executable form of IL, the current implementation
of the language comes with an interlingua virtual machine (ILVM).
As the name implies, the ILVM is capable of taking well formed IL
and executing it either against the world or just natively. Like the IL
language itself, the ILVM is capable of supporting new code body
language extensions by allowing programmers to add additional de-
fCode engines to it. As the example above shows, this extensibility
is facilitated by having the authors of defCodes specify the name of
the interpreter (e.g., the FunctionEngine) that is able to understand
the specific syntax and semantics of the code body.

2.2 Interaction Language

The interaction language is a specialized language, which is con-
structed using IL, that is used within BL to represent perceptions
coming into MABLE, utterances that are made by MABLE or the
teacher, and imperatives that MABLE or teacher must perform. In
other words, interaction language is the language that the student
uses to interact with its environment.

The imperatives, percepts, and utterances that are exchanged be-
tween the student and its world form a timeline. The timeline,
which forms the central communication mechanism between the
student and its world, is simply a time-stamped record of messages.
These messages can be retrieved by the teacher, the student, or the
world.

Roger Mailler, Daniel Bryce, Jiaying Shen, Ciaran O'Reilly + MABLE: A Framework for Learning from Natural Instruction

EBLEnvirenment MABLE
Timeline
Student Leaming Senices
Interface Control Module (CM)
(TSI ‘ HNumeric Function ‘ Predicate ‘
Learning Control
Strategy (LCS) Langauge Translation Process
MessageBus T
Studentl _@_ mﬂrﬂ:" : @} Interingualistener
1\ Strategies : Learning Strategies
Interlingualistener |slenle(
7~ . By Noticing By Feedback
D)]
'
Frameworkl '
I::l C)_E]/ _____ : By Telling From Example
'
: Lo
] | 1 T
v VoV oV
MessageConsumer | Execution Engine (EE) Knowledge Working i Knowledge
Memory (KWM) QueryEngine Repository
IL Virtual
Machine

Figure 2: MABLE Framework

The interaction language is made up of three primary interac-
tion modalities: imperatives, perceptions, and utterances. The first
of these, imperatives, are requests to perform procedures, actions,
or logical/functional computations. Actions are the set of things
that MABLE or teacher can directly do in the environment. For
instance, a primitive action might be "kick", which is not decom-
posed to "lift foot, bring foot back...".

Perception messages are associated with objects that the student
can perceive in the world. For example, if MABLE is shown a
brown table with one blue block on it, it will receive the following
perception message:

Perception (name=Percept-123,
gainedPercepts={Table (color=brown, name=tablel),
Block (color=blue, name=blockl,
support=tablel)) },
lostPercepts=null);

The last, and probably most complex, of the interaction modal-
ities is the utterance language. The utterance language, like the
other interaction modalities, is a sub-language of interlingua and
as such is a structured language. This is not to imply that the lan-
guage is unambiguous. In fact, interaction language is purposely
constructed to introduce limited ambiguity in that the teacher may
use terms in ambiguous way like "use the block to block the car"
(see Figure 1) or may use them in an incomplete manner, as in us-
ing Houston to refer to the Houston Astros. In addition, it is not
generally assumed that the teacher knows the symbols that the stu-
dent uses to represent its knowledge. For instance, the student may
understand the word "Dog", but the teacher refers to a dog as a
"Canine". This will be discussed in further detail is Section 3.2.

2.3 Curriculum

As mentioned previously in this paper, the goal of MABLE is
to learn new concepts from the teacher. To help the student grasp
difficult concepts, it is often necessary to break the concept down
into simpler components that can be built or bootstrapped upon in
the future. Each of these simpler components forms a lesson in
a curriculum. For example, the curriculum may have the goal of
teaching the student to build a stack of blocks. This can be broken
down into teaching the student to recognize blocks, lift blocks, rea-
son about the "supports" relationship, etc. Lessons can therefore
be thought of the combination of a target concept and a natural

395

instruction method (NIM) for conveying that information.

Each lesson requires that MABLE have some prerequisite knowl-
edge. For example, you cannot stack a block if you have no idea
how to pick one up. This begs the question about whether the stu-
dent can learn anything, because when it first starts, it has no knowl-
edge. In BL, this problem is resolved by injecting the student with
IL that provides basic information about its world and its capabili-
ties on startup.

Target concepts can take many forms, but in BL these are gener-
ally, either a new rule, definition, function, or procedure. Because
of the laddered nature of the curriculum, the lessons also usually
include an examination at the end of them. This helps both the
teacher and student determine if a proper level of mastery has been
achieved before moving onto more difficult concepts.

Each lesson also has an associated NIM. NIMs can be thought
of as a contract or protocol that is used by the teacher and student
when conveying information intended to teach the particular type
of target concept. For example, one NIM contract is the demon-
stration of a procedure. Currently, there are eight NIM contracts
that cover telling and examples of predicates, functions, and proce-
dures as well as feedback using score and explanation.

3. MABLE

The MABLE framework (Figure 2) embodies an integrated ap-
proach that provides the functional capabilities needed for boot-
strap learning. It consists of a highly modular software framework
that can be downloaded, installed, and executed with minimal ef-
fort. In this section, we describe MABLE’s overall architecture and
top-level modules: controller, execution engine, knowledge work-
ing memory and repository, learning strategies and services.

Section 3.1 describes features of the software framework that tie
together MABLE’s functional modules and make MABLE highly
extensible. Section 3.2 describes the Knowledge Repository (KR),
Working Memory (WM), and Query Engine (QE) that store and
retrieve IL objects. Section 3.3 describes the learning strategies
and learning services that encapsulate alternative algorithms for
learning from natural instruction and standard machine learning,
respectively. Section 3.4 describes the Execution Engine (EE) mod-
ule that supports IL program linking, interpretation, and execution.
Section 3.5 discusses the centralized Control Module (CM) that co-

AAMAS 2009 - 8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

ordinates all system behavior, much like an operating system’s ker-
nel. In Sections 4 and 5, we describe how MABLE fits into a larger
environment with a teacher and simulator for instructible comput-
ing and describe how MABLE’s modules interact in an example
curriculum.

3.1 Framework Overview

At its simplest, the MABLE framework can be thought of as a
collection of inter-operating modules that collaborate to tackle the
bootstrap learning problem. A primary objective of the MABLE ar-
chitecture is for learning strategies and services to be easily added
or removed to configure alternative bootstrapped learning experi-
ments; this requires considerable foresight into the software frame-
work design.

To support multiple interacting modules, MABLE (which is im-
plemented in Java) is built on the Spring Framework [11], allowing
it to take advantage of several pre-existing and proven technolo-
gies. Spring greatly simplifies module life-cycle management and
messaging. In particular, at its core, the Spring Framework sup-
ports the inversion of control containers and dependency injection
design patterns, which decouple the modules and make them re-
active. Support for these patterns, simplifies the modularization
of MABLE'’s components by having each module programmed to
explicit interfaces. As such, the system can be configured in differ-
ent ways. Another useful feature of the underlying Spring frame-
work is the support for transparent (i.e., no re-compilation) distribu-
tion of the modules across a network; thus, computationally costly
learning strategies and services can be run on dedicated hardware.

In addition to the Spring Framework, MABLE uses several other
Open Source projects, and all third party libraries or contributed
source used by MABLE are BSD license [10] compatible or better.
MABLE, once matured to a sufficient level, will itself be publicly
released as an open source project.

3.2 Knowledge Storage and Retrieval

One of the key goals of the MABLE framework is to bootstrap
learn new concepts in terms of existing knowledge, either by inter-
preting, extending, chaining, modifying, or refuting. This style of
learning requires both a short term and a long term memory. The
long term memory stores and supports queries over knowledge ob-
tained from other curricula and lessons, while the short term mem-
ory focusses on knowledge relevant to the current target concept. In
MABLE, the Knowledge Repository (KR) is the long term memory
and the Working Memory (WM) is the short term memory, which
is a cache of the KR. The Query Engine (QE), as the gateway to the
WM and KR, populates and maintains the KR as well as processes
WM storage and retrieval requests.

Knowledge Repository: The KR stores multiple information types,
including the IL ontology, concepts learned by MABLE, and meta-
knowledge about concepts (called provenance). Storing the IL on-
tology in the KR enables recreation of the language at each startup
and the grounding of each concept that was, and will be, learned.
However, the KR’s primary function is to store all knowledge ever
learned, including instances (domain objects), declarative knowl-
edge (predicates, functions and rules) and procedural knowledge (a
series of steps with branches and loops). The last type of informa-
tion, provenance, is meta information about the knowledge learned,
including which learning strategy learned this piece of knowledge
in which lesson with which instructions and prior knowledge. Prove-
nance also records versioning information and distinguishes com-
peting hypotheses of the same concept. With provenance informa-
tion, the student is able to reconstruct the context of learning at a
later time, and revise or extend the existing knowledge if necessary.

396

Query Engine: There are multiple queries that strategies can make
of the KR via the QE. Queries supported by the QE can vary signif-
icantly in detail from the name of the knowledge to some property.
For example, MABLE may hear the assertion “This is a dog” and
sees a few examples of dogs. Before trying to learn the concept
“dog", a learning strategy may query the KR to see if MABLE al-
ready knows what a “dog” is, and whether its existing concept of
“dog” needs to be modified to conform to the examples provided.
The first query is of the form “Do I know anything about dog”. The
KR returns all definitions of concepts named “dog” and caches the
concepts within the WM. However, if no concept named “dog" is
known, MABLE may know “dog” by another name, such as “ca-
nine". In this situation, MABLE can query attributes of objects
used in the instruction. For example, the query may be “Do I know
an animal that has four legs and a tail and barks?”.

Ambiguity: IL permits ambiguity by allowing alternative concepts
to share the same name. Viewed as a feature of IL, shared names
refer to competing hypotheses of the same concept and mimic the
flexibility of human language. One important function of the QE
is to identify and possibly resolve ambiguity to its best ability.
When the ambiguity cannot be resolved, the QE returns the possi-
ble matches to the query with more information (to help strategies
with disambiguation).

Consider an example of four types of ambiguity, illustrated in
Figure 1. In this example, MABLE has previously learned in three
lessons different concepts named “block™. The types of ambiguity
are:

e Type Ambiguity: When "block" is a procedure (action/verb)
and "block" is a predicate (object/noun), the QE returns both
or filters by a specified type.

e Contextual Ambiguity: When "block" in the Blocksworld is
different from (road) "block" in the traffic context, the QE
can filter the context in the query.

e Competing Hypotheses: A belief weight is attached to each
hypothesis and the QE can filter by a belief weight threshold.

e Revisions: Revisions of the same concept, by default, should
shadow the previous versions. The QE returns the most re-
cent version by default and, when specifically asked, returns
older versions.

The current system fully supports revisions and partially supports
scenario type ambiguity. Fully supporting all types of ambiguity
resolution is planned for the near future.

Working Memory: The WM has three main functions: i) storing
the current lesson context, ii) caching KR queries, and iii) acting as
a shared medium for knowledge interchange. The lesson context
includes teacher instructions, percepts, and test grades. The WM
caches queries and thus focuses the attention of MABLE on only
the part of the knowledge base that is thought to be relevant to the
current learning session. The most important function of the WM
is to share knowledge between learning strategies and services, and
is closely related to blackboard systems [3]; Learning strategies
output intermediate learned concepts and/or hypotheses they deem
important or useful for the other collaborating strategies. Together
with the knowledge retrieved from the KR, this collection of new
forming knowledge is the focus of attention used to bootstrap new
concepts.

3.3 Learning Strategies and Services

The learning strategies and services are the most modular com-
ponents of MABLE. Learning services capture well-studied black-
box machine learning algorithms, such as those addressing induc-

Roger Mailler, Daniel Bryce, Jiaying Shen, Ciaran O'Reilly + MABLE: A Framework for Learning from Natural Instruction

tive logic programming (ILP), reinforcement learning, and regres-
sion. These services are modular so that researchers can easily per-
form bootstrapped learning experiments with their algorithms in
MABLE.

Learning strategies are in some respects novel to bootstrapped
learning. That is, learning strategies are meant to understand a par-
ticular natural instruction method, such as learning predicates by
example. Learning strategies interpret the teacher’s instruction and
apply bias in invocations of various learning services. For example,
a strategy for learning predicates by example, may attempt to learn
a predicate by invoking an ILP service multiple times by selecting
different features each time. Ambiguity in the instruction (such as
the “block™ example from the QE discussion) may require explo-
ration of multiple alternatives to narrow down the set of features.

3.4 Execution Engine

The EE is responsible for executing, controlling, and monitor-
ing procedures that are specified in IL. Internally it contains an IL
Virtual Machine, and has several additional features that simplify
interacting with the teacher and world, these include:

Interacting with the World: During learning and testing MABLE
can be asked to perform a task in the world, which can comprise
multiple actions. Each domain has a set of primitive actions; in
Blocksworld these would be grasp a block, raise, lower, release,
and move the claw. These atomic action requests are detected by
the EE during the run of an IL program and are translated into
world actions. Once an action is executed, the EE will wait for
an observation from the world before proceeding. In addition, all
teacher instructions received by MABLE during the execution of a
program are consumed by the EE. This allows the EE to annotate
execution traces with instructor feedback. On completion of a pro-
gram, the EE can provide a trace of actions and responses received
to be analyzed further.

Call Backs: Learning strategies that invoke the EE typically pro-
vide completely self-contained IL programs, but in some cases a
call back to the invoking strategy can be useful. Online learning
algorithms may require procedures that generate data (such as state
and action sequences); call backs can i) feed runtime data to in-
voking strategies and ii) allow strategies to dynamically adapt the
call back sub-procedure based on the runtime data. For example,
a strategy can associate a call back with an sub-procedure to learn
the cases where the sub-procedure is invoked and supply the cor-
rect variation on the sub-procedure for the execution engine to per-
form (perhaps integrating a reinforcement learning algorithm im-
plemented within a learning strategy).

Standard Libraries and Extended Interpreters: The EE includes
a standard set of library routines that can simplify the construction
of more complex procedures during learning. In addition, extended
interpreters allow specialized problem solvers to be used to execute
different classes of IL programs. This avoids the problem of trying
to use a single general purpose problem solver to handle all situa-
tions. Instead, specialized solvers can be developed and registered
with the Execution Engine in order to extend the capabilities of IL
and MABLE in a modular manner.

Dynamic and Static Linking: During the normal flow of events,
while learning and being tested, MABLE receives imperatives from
the teacher, asking it to answer a question directly or to perform a
task. In these scenarios, MABLE must figure out what of its current
knowledge is relevant to best answer the imperative. The response
given by MABLE to the teacher is generated by constructing an
IL program and then executing it in the EE. MABLE may have

397

learned multiple candidate solutions, but the EE has no knowledge
of these different solutions nor how to choose between them. In
these cases, the EE delegates dependency resolution to a dynamic
linker. Different algorithms may be used to select the relevant set
of IL objects necessary to construct a complete IL program.

3.5 Control

The Control Module (CM) manages MABLE with a Learning
Control Strategy (LCS). The LCS is a policy responsible for de-
termining what MABLE is doing at any given moment in time;
whether selecting a lesson, answering an imperative, processing in-
struction, or employing a learning strategy to learn a concept. Each
such control action is classified as either a learning strategy or a
worker strategy. Learning strategies perform the majority of learn-
ing, taking teacher instruction and previously learned concepts to
bootstrap learn a new concept. Worker strategies embody other
actions not used for learning, such as lesson selection, imperative
answering, and instruction processing.

Like any policy, the LCS requires a state space to which it maps
actions (strategies). The state space is a view of MABLE’s working
memory called a template. The template is a structured represen-
tation of the data present in working memory. For example, the
template view of the working memory categorizes i) concepts and
teacher instruction into labeled objects, actions, procedures, predi-
cates, and functions, and ii) information about the state of the cur-
riculum, such as outstanding imperatives, lesson selection options,
the lesson’s natural instruction method, and a history of actions.

The template assists the LCS to determine which strategies are
applicable at any given time. Each strategy declares a pattern (pre-
condition) with respect to templates. Learning strategy patterns
state constraints, such as the natural instruction method type, the
existence of labeled data, the existence of reward functions, etc.
Worker strategy patterns also declare constraints over working mem-
ory, such as the existence of an outstanding imperative and a suit-
able concept for answering the imperative.

With templates and patterns to determine the applicable strate-
gies, the LCS must select among the applicable strategies which to
execute next. There are several issues that the LCS must consider
when selecting strategies: i) is the target concept known, ii) has the
target concept been learned well, iii) is the learned concept of high
quality, and iv) which instructions or concepts should can be used
to learn? Each of these issues are the subject of ongoing research
on the LCS. The primary goal of the LCS is to create high-quality
concepts that can then be incorporated into the corpus of knowl-
edge that MABLE uses to bootstrap.

The current LCS is based on the following logic. Each applicable
learning strategy can create new concepts that other strategies may
use; as long as applicable strategies are changing the working mem-
ory by adding learned concepts, then each learning strategy must be
invoked again, in turn. This LCS is based on an extreme notion of
convergence in learning, that is, learning has converged when no
changes to concepts occur. Future developments in the LCS will
use a more general notion of convergence, where repeated learning
strategy invocation may continually improve the quality of learned
concepts, up to some desired level of accuracy.

4. BL FRAMEWORK

Our goal is for instructible computers to be immersed in a vari-
ety of environments, such as offices, homes, and laboratories, but
MABLE requires a test framework to support high throughput ex-
periments during development. The BL framework (depicted in
Figure 3) supports the basic interactions with a teacher and world
that a digital student like MABLE requires. The “BLEnvironment”

AAMAS 2009 - 8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

Teacherl . g @

Teacher C}\ BLI «MABLE»
Student

s
N

Frameworkl

Worldl Student!
World ')
=4

o —o—

Frameworkl
PerceptPoster]

Framewarkl

=SimulatorCommands|>

Domain Simulator

Figure 3: The Bootstrapped Learning Framework.

Figure 4: Blocksworld

links the “Student” (MABLE), the “Teacher”, and the “World” by
organizing learning sessions and collecting performance metrics.
As previously mentioned, the teacher (either a software agent or
human) can instruct the student via messages that describe ges-
tures, utterances, and imperatives. Both the teacher and the stu-
dent can observe and affect the world by performing actions. The
world 1) provides an abstraction from a simulator or actual environ-
ment, and ii) maintains a description of the world state. Currently,
the BL Framework supports two separate simulators; the classic
Blocksworld domain simulator (Figure 4) and the Robocup soccer
simulator [6] (Figure 5).

S. LEARNING WITH MABLE

MABLE supports bootstrapped learning from natural instruc-
tion through tightly coupled interaction of its various modules, de-
scribed in Section 3, and interaction with a teacher and world via
the framework described in Section 4. This section details how
the components interact through an illustrative example taken from
Blocksworld. The example curriculum is as follows, learn from
examples a predicate “IsAStack”, learn by being told a procedure
“MakeStack” that works in the case when all blocks are on the ta-
ble, and learn from feedback a procedure refinement of “MakeStack™
that works when the blocks are already in unintended stacks (e.g.,
the Sussman anomaly [12]). Each concept builds upon a prior con-
cept: a MakeStack procedure uses IsAStack as its goal, and the
MakeStack refinement uses the prior MakeStack as a special case.
Each concept is taught over a series of learning and testing lessons.

Background Knowledge: Prior to the curriculum, MABLE is pro-
vided a minimal amount of background knowledge represented in
IL. This knowledge includes IL concepts such as i) the predicate
“On(Block, Block)” and the procedure “MoveOnto(Block, Block)”,
ii) atomic actions such as “Grasp”, “Lift”, and “Release”, and iii)
syntactic descriptions of some concepts to be learned such as the

LIS

fact that “IsAStack™ has three Block parameters named “top”, “mid-

398

Figure 5: Robocup 3 vs 2

dle”, and “bottom”. This background knowledge serves as the
foundation upon which bootstrapped concepts are built. These con-
cepts are stored in the KR from the start of the curriculum.

Learning Lessons: The curriculum is taught by the teacher first
supplying lesson options to MABLE, and then MABLE selecting
a lesson and the teacher sending a stream of lesson-specific mes-
sages to MABLE. All messages are first handled by MABLE’s
Teacher/Student Interface (T'SI); messages are then either redirected
to the message bus, if MABLE is not currently executing an EE
program, or sent to the EE otherwise (because the messages are
relevant to the EE program). Meanwhile, the CM is executing its
LCS; when new messages arrive on the message bus, the LCS pol-
icy is to invoke a worker strategy to analyze each message. This
worker strategy populates the working memory template. Based
on the template, the LCS determines the next strategy to invoke.
In Blocksworld, the first message is a list of lessons, either an
“IsAStack” learning lesson or an “IsAStack” testing lesson. A les-
son selection worker strategy is invoked in this case to pick learn-
ing lessons, when available, and otherwise pick testing lessons.
Picking a lesson corresponds to creating an outgoing message and
sending it to the TSI for delivery to the teacher via the timeline.
Similar to the other incoming messages, the lesson messages for
“IsAStack” end up in the working memory template; the messages
are marked as labeled examples of the form: “(IsAStack (top=
Block(name =A, support=B), middle=Block(name=B, support=C),
Block(name=C, support=T)), true)”.

Learning Strategies: At this point, the LCS determines that two
learning strategies are applicable: learning by noticing and pred-
icates by example. Learning by noticing is invoked first and no-
tices a symmetry between the blocks and their support with the
On predicate. Learning by noticing adds to the working memory
a predicate “On(Block1, Block2) := Block]1.support=Block2”. The
CM invokes the predicates by example learning strategy next. The
strategy uses both the learned symmetry and the labeled examples
to generate two interpretations of a target predicate concept: “IsAS-
tack(top, middle, bottom) := On(top, middle), On(middle, bottom)”
and “IsAStack(top, middle, bottom) := top.support=middle, mid-
dle.support=bottom”. In this case, the strategy determines that the
first predicate concept is more succinct and adds it to the working
memory. The CM notices that the working memory has changed
and that both the learning by noticing and predicates by example
are still applicable. The CM invokes both again, but neither update
the working memory. At this point, the LCS states that because 1)
no further messages have been received, ii) there are no outstand-
ing imperatives to answer, and iii) the applicable learning strategies
have not generated new concepts, that it should run a worker strat-
egy to signify that MABLE is done with the current lesson and
ready for the next.

Testing Lessons: The teacher sends a message to MABLE to indi-

Roger Mailler, Daniel Bryce, Jiaying Shen, Ciaran O'Reilly + MABLE: A Framework for Learning from Natural Instruction

cate the available lessons, now only a testing lesson for “IsAStack”
is available. Similar to before, MABLE selects the lesson and is
given a stream of messages. The first message is an observation
of the world state and the second is an imperative message. The
worker strategy for analyzing instruction adds the current world
state and the outstanding imperative to the template. Next, the LCS
determines that only the learning by noticing strategy is applicable;
it is invoked but adds no new knowledge to the knowledge work-
ing memory. The LCS then determines that the worker strategy for
answering imperatives is applicable and invokes it. The answer im-
perative strategy first determines whether it has the knowledge to
answer the imperative by querying the QE. Determining if the ap-
propriate knowledge exists is non-trivial in most cases because the
teacher does not necessarily tell the student the name and parame-
ters for a target concept taught in learning lessons. In this case, the
teacher did identify the target concept by name and the predicates
by example strategy used the same symbolic name for its learned
concept. The answer imperative strategy finds a best matching con-
cept by inspecting symbolic names, parameter signatures, and even
temporal relevance. The answer imperative strategy picks the con-
cept learned by the predicates by example strategy and creates an
execution engine program with the “IsAStack” predicate definition,
and EE dynamically links definitions for the “On” predicate. The
EE accepts the program, evaluates the call to “IsAStack”, and re-
turns a boolean truth value. The answer imperative strategy takes
this return value and sends it as an answer message to the teacher.
The teacher grades the answer and sends a grade to the student. In
this case the grade is 100% and the student sends a message to the
teacher indicating they are done with the lesson.

The next available lessons are for “MakeStack” learning and test-
ing. The learning lesson is chosen and several messages telling the
steps of “MakeStack” are received. First is a message “Current-
Goal(IsAStack(top, middle, bottom))”, referring to the previously
learned concept. Second is a message “First(MoveOnto(middle,
bottom))”, followed by “Finally(MoveOnto(top, middle))”. In the
same manner MABLE analyzes the messages and adds them as la-
beled (the labels are CurrentGoal, First, and Finally) concepts to
the template. The LCS determines that the learning by noticing
and the procedures by telling strategies are applicable and invokes
each in turn. Learning by noticing does not generate any new con-
cepts, but the procedures by telling strategy generates ‘“‘Procedure-
145(top, middle, bottom)” with steps “MoveOnto(middle, bottom),
MoveOnto(top, middle)” and a provenance annotation stating that
the goal of the procedure is "IsAStack(top, middle, bottom)”. The
CM tries additional strategies, but none contribute new concepts.
MABLE finishes the lesson and starts the next, the testing lesson.
MABLE is given a state and the imperative “MakeSo(IsAStack(A,
B, C))”. The answer imperative strategy has a built in understand-
ing of “MakeSo” and uses the QE to find all procedures; within the
set of procedures it looks for those relevant to “IsAStack”. It finds
that Procedure-145 has a provenance annotation for “IsAStack” as
its goal. The strategy creates an EE program that the EE links and
evaluates.

Execution: To create a fully interpretable EE program, the pro-
gram needs extra information, such as the definition for “MoveOnto
which is a procedure consisting of other concepts “Grasp”, “Lift”,
“Move”, “Lower”, and “Release”. The answer imperative strat-
egy makes use of the EE linker to traverse the top-level concepts
and find concept dependencies. Unlike the evaluation of a predi-
cate like “IsAStack”, evaluating a procedure involves performing
world actions. For example, Procedure-145 involves evaluating
“MoveOnto” twice with different parameters. Each “MoveOnto”

)

399

evaluation grounds out to atomic actions, such as “Grasp”. These
atomic actions are communicated to the TSI by the EE and from
there to the world. The result of evaluating an ground action is a
state observation, which the EE caches within an execution trace.
Upon EE completion the answer imperative strategy sends a mes-
sage to the teacher indicating it is done. The teacher grades the
student by observing the world state and sending a grade.

The final concept is a refinement of the “MakeStack” procedure
taught through feedback. The teacher starts the learning lesson
by sending a current state observation where C is on A and B is
on the table, a message “CurrentGoal(IsAStack(A, B, C))”, a ges-
ture to the support of C indicating its relevance, and a message
“MakeSo(IsAStack(A, B, C))”. The answer imperative strategy has
already answered this imperative in the last lesson and does so
again, but, unfortunately, the grade returned is zero. The initial
state had C on A, making the sub-procedure “MoveOnto(A, B)”
fail. MABLE starts the next learning lesson and tries the feed-
back by score strategy instead. The strategy creates a state and
action space from the previously seen state observations and ac-
tions (including the learned ‘“Procedure-145), a reward function
from the “CurrentGoal” and the gesture to block C’s support, and
it invokes the reinforcement learning service. This learning service
interacts with the EE to execute actions and maintain state. Even-
tually the learning service returns to the strategy a procedure called
“Procedure-575(top, middle, bottom)”. MABLE completes the les-
son and takes a testing lesson. MABLE uses the “Procedure-575”
to pass the test. MABLE then passes the curriculum because it
learned the final concept.

6. RELATED WORK

The Cyc project [8] relates very closely to MABLE in that both
are motivated by a need to represent and reason with large and pos-
sibly ambiguous knowledge bases. Cyc is aimed at performing the
same type common sense reasoning that a human might, whereas
MABLE is not quite as broad, performing only in specific domains.
The primary difference between MABLE and Cyc is MABLE'’s
emphasis on learning from natural instruction and Cyc’s emphasis
on reasoning with knowledge (whether learned or hand-coded).

The CALO project [9] seeks to design agents that learn about
humans’ daily activities and provide assistance to complete repeti-
tive tasks. MABLE addresses a somewhat broader problem in that
it can learn to perform tasks autonomously or collaboratively and
it learns actively rather than passively from an instructor. While
MABLE could, in practice, continually improve performance over
time, the emphasis is on having distinct learning and performance
periods where passing a curriculum implies mastery.

Soar [7] is a very general cognitive architecture that has been
used to learn from instruction [5]. Soar is well-known for its EBL-
like universal learning method, called “chunking”. Soar has used
chunking to associated learned aspects of instruction that are later
used for reasoning [5]. Huffman and Laird [5] studied tutorial in-
struction where the learning agent is given an abstract task and elic-
its the instructor as needed to learn requisite knowledge. The pri-
mary difference between MABLE and Huffman and Laird’s work
is the underlying architecture; MABLE can cope with uncertainty
and ambiguity in the world, instruction, and its own knowledge,
where Soar currently does not.

Prodigy [2], unlike Soar and much like MABLE, employs mul-
tiple learning methods. Prodigy is mainly aimed at solving plan-
ning problems and uses learning to speed-up plan search. Prodigy
does support a type of apprentice learning, where the instructor
uses a graphical interface to edit domain models and partial plans,

AAMAS 2009 - 8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

much like a mixed-initiative planner. While many of the target
concepts learned by MABLE are procedural, MABLE also sup-
ports learning of other domain knowledge. The primary difference
is that MABLE learns from natural instruction, whereas Prodigy
learns from more-direct instructor manipulation of internal data
structures.

More recently, Allen et. al [1] describe PLOW, a task learning
agent. PLOW learns from natural instruction, that is spoken natural
language, and observations of key strokes and mouse clicks how
to perform web browser tasks. PLOW shares many attributes of
CALO, but focusses on natural language as an instruction medium.

7. DISCUSSION AND FUTURE WORK

MABLE has been tested on curriculum from both the Blocksworld
and Robocup soccer domains. In Blocksworld, the system was able
to bootstrap through three lessons in order to learn to make a stack
of three blocks. These three lessons included the lessons described
in Section 5. In Robocup, MABLE was able to learn how to control
a keeper in the 3 versus 2 keepaway sub-game by bootstrapping on
four lessons. These included learning what "out of bounds" means
from examples, learning how to catch a ball by being told, learn-
ing how to compute distance from examples, and finally learning a
correct passing strategy by getting feedback from the teacher. We
consider these to be great successes in demonstrating the flexibil-
ity of the system because these two domains were completed with
zero re-programming or configuration changes made between cur-
riculum.

However, we learned a great deal from these experiences con-
cerning the short-comings of the system. Most of these involve
missing shared services or additions to services that already exist
in the system. Below is a list of some of the additions that need to
be made to the system:

Semantic ontology: Although IL is able to represent nearly any
type of knowledge that can be taught or learned, it is missing ex-
tensions that explicitly support reasoning about the application of
this knowledge and its relationship to other knowledge in the sys-
tem. We intend to create an semantic ontology to support explicit
reasoning about the practical usefulness of student knowledge.

Execution engine belief maintenance: The EE currently provides
the mechanics necessary to support simple state updates on prop-
erties of objects that are in the environment. It does not, however,
automatically update lifted or inferred state. We plan to add in a
belief maintenance system that will allow components in the sys-
tem to register predicates and functions that will be updated when
the primitive state is altered.

Generalized probabilistic reasoning: MABLE can currently han-
dle simple ambiguity, but lacks the ability to do anything beyond
deterministic inference. Although some of the learning services are
able to generate a set of weighted theories that cover a given input,
the rest of the system must choose the highest weighted one and
consider that as fact.

Enhanced control: The current LCS assumes that all information
is relevant to a target concept. Directing the focus of attention is an
important aspect of controlling learning that will be addressed more
aggressively by focussing attention on small portions of working
memory. Also, templates and patterns describe the inputs to learn-
ing strategies that, when coupled with a target concept, allow a form
of back-chaining to determine which inputs to the learning strategy
are required to learn the target concept. In the future, missing learn-
ing strategy inputs can be supplied through additional means-ends

400

reasoning to identify strategies that could learn the required infor-
mation, or ask the teacher.

Mixed NIMs: It is our plan to allow for the mixing of natural in-
struction. For example, we would like the teacher to be able to talk
through a demonstration, which is actually a mixing of telling and
demonstration. The systems should be flexible enough to handle
these types of student/teacher interaction.

Additional domains: Although it is a great success that MABLE
works in two domains, we need to test on additional ones to demon-
strate and validate the flexibility and generality of the system. Cur-
rently plans are to test MABLE on three additional domains.

8. CONCLUSION

MABLE represents a significant step toward human-instructible
computing. There are a myriad of challenges that have been faced
in taking this step and in this paper we have elucidated many of
them and given our first approximations at their solutions. Cur-
rently this project is just finishing its first of a three year effort,
and we expect that many of our early solutions will need to be im-
proved to be useful for generalized learning from natural instruc-
tion. MABLE'’s framework provides a solid foundation from which
to adapt because it was designed with modularity and extendibility
in mind. In the near future, we hope to release the first version to
the AI community at large and welcome suggestions and improve-
ments from all who wish to join into this growing area of research.

Acknowledgements: This material is based upon work supported
by the Defense Advanced Research Projects Agency (DARPA/IPTO)
‘MABLE: Modular Architecture for Bootstrapped Learning Exper-
iments’, issued by DARPA/CMO under contract #HR0011-07-C-
0060.

9. REFERENCES

[1] J. E. Allen, N. Chambers, G. Ferguson, L. Galescu, H. Jung, M. D.
Swift, and W. Taysom. Plow: A collaborative task learning agent. In
AAAI pages 1514-1519. AAAI Press, 2007.

[2] J. G. Carbonell, O. Etzioni, Y. Gil, R. Joseph, C. A. Knoblock,

S. Minton, and M. M. Veloso. Prodigy: An integrated architecture for
planning and learning. SIGART Bulletin, 2(4):51-55, 1991.

[3] D. Corkill. Blackboard Systems. Al Expert, 6(9), January 1991.

[4] Daniel Oblinger. Bootstrapped Learning — External Materials.
http://www.sainc.com/bl-extmat/, October 2008.

[5] S.B. Huffman and J. E. Laird. Flexibly instructable agents. Journal

of Artificial Intelligence Research, 3:271-324, 1995.

H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa.

Robocup: The robot world cup initiative. In AGENTS ’97:

Proceedings of the first international conference on Autonomous

agents, pages 340-347, New York, NY, USA, 1997. ACM.

J. E. Laird, A. Newell, and P. S. Rosenbloom. Soar: An architecture

for general intelligence. Artif. Intell., 33(1):1-64, 1987.

[8] D.B. Lenat, R. V. Guha, K. Pittman, D. Pratt, and M. Shepherd. Cyc:
Toward programs with common sense. Cm. ACM, 33(8):30-49, 1990.
[9] D. Morley and K. Myers. The spark agent framework. In Proc. of the
Third Int. Joint Conf. on Autonomous Agents and Multi Agent
Systems (AAMAS-04), pages 712-719, New York, NY, July 2004.
[10] Open Source Initiative. Open Source Initiative OSI - The BSD
License:Licensing.
http://www.opensource.org/licenses/bsd-license.php, October 2008.
[11] SpringSource. Spring Framework. http://springframework.org/,
October 2008.
[12] G. Sussman. A Computer Model of Skill Acquisition. Elsevier
Science Inc. New York, NY, USA, 1975.

[6

—

[7

—

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

